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Outline

The plan for this talk is a brief introduction to integer lattice gases
and overrelaxation.

1 Lattice gas and lattice Boltzmann methods

2 Integer lattice gases

3 General overview of overrelaxation

4 Overrelaxation for an integer lattice gas
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Background of Lattice Boltzmann and Lattice Gas

The lattice Boltzmann method (LBM) is a computational
algorithm which is commonly used for hydrodynamics.

LBM models the dynamics of both the microscopic and
macroscopic regimes by simulating discretized mesoscopic
kinetic equations.

LBM uses probability distributions of particles with explicit
moments of conserved quantities to model the equations of
motion.

Microscopic, mesoscopic, and macroscopic representations.
Shimpei Saito, Yutaka Abe, and Kazuya Koyama. “Lattice Boltzmann modeling and simulation of liquid jet

breakup”. In: Phys. Rev. E 96 (1 July 2017), p. 013317
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How It All Got Started

LBM was developed through its predecessor, lattice gas
cellular automata (LGCA). LBM was developed to improve
upon the shortcomings of LGCA methods.

LGCA methods simulate hydrodynamics by placing discrete
particles as Boolean valued occupation numbers on nodes of a
hexagonal lattice. The particles are allowed to move to
neighboring nodes at discrete time steps through a prescribed
set of lattice velocities. If there are two or more particles
which occupy a specific lattice point, the particles will undergo
a collision which is designed to conserve mass and momentum.

LGCA velocity set and hexagonal lattice.
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How It All Got Started

The discrete nature of LGCA inherently includes fluctuations
in the form of statistical noise.

Although LGCA could simulate fluid systems, problems arose
which seemed to limit its functionality.

The Boolean nature of the occupation numbers led to a
Fermi-Dirac distribution rather than the expected Boltzmann
distribution.
This Boolean nature was the reason for the exclusion principle
allowing only a single particle of a given velocity at a lattice
node.
The exclusion principle led to Galilean invariance violations.
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Lattice Boltzmann Methods

Lattice Boltzmann methods (LBM) was first derived from LGCA as
a Boltzmann average of the discrete model. Rather than discrete
occupation numbers, lattice Boltzmann utilizes continuous particle
distribution functions, fi(x, t). The general evolution equation for
LBM is written

fi(x+ vi, t+ 1) = fi(x, t) + Ωi({fi}) (1)

where {vi} is the set of discrete velocities at which the particle
distribution functions propagate and Ωi({fi}) is a collision
operator which model particle collisions and modify the distribution
functions

This version of LBM was useful for systems which a limited
range of transport coefficients and in which fluctuations are
not relevant.

However, in systems with wider range of transport
coefficients, this method fails and a different approach to
LBM was required to expand its versatility.
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Lattice Boltzmann Methods

A change in the collision by relaxing the distribution functions
towards a local equilibrium allowed for higher range of transport
coefficients and higher computational efficiency.

BGK collision operator

Ωi,BGK =
1

τ
(f0

i − fi) (2)

where f0
i is the local equilibrium distribution.

Occupation numbers are no longer Fermi-Dirac distributed,
but follow a Maxwell-Boltzmann distribution.

Allowed for easier removal of Galilean invariance violations.
Can be overrelaxed to give a higher range of transport
coefficients (low viscosity).

This method is not derivable from LGCA.

This can be derived from kinetic theory.
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Lattice Boltzmann Methods

The BGK collision operator in Eqn. (2) gives rise to the
concept of overrelaxation.

Overrelaxation is a technique used in fluid dynamics in which
local collisions over-shoot local equilibrium leading to an
oscillating like convergence to local equilibrium.
Overrelaxation can be used to help to establish convergence in
a diverging iterative process.
Overrelaxation allows to achieve lower transport coefficients
(low viscosity) than could normally be achieved.
Utilizing a BGK collision operator will allow LBM to overrelax
and explore systems not possible in the Boltzmann averaged
version.

Kruger et al., 2018
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Lattice Boltzmann Methods

The distribution functions can be used to find the macroscopic
quantities of a system through weighted sums known as velocity
moments. For particle density, the moment is

ρ(x, t) =
∑
i

fi(x, t). (3)

LBM models are imposed on spatial lattice of dimension, d with
the number of velocities in the discrete velocity set, {vi}, q. The
LBM model is determined by the naming. convention, DdQq.

The correct set of weights {wi} depends on the spatial
dimensions and the choice of the velocity set and lattice
temperature, θ.

Graphical representation of D2Q9
model.
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Lattice Boltzmann Methods

The LBM algorithm can be separated into two distinct steps:
1 Collision - The local redistribution of distribution functions

according to the specified rules of the collision operator.
2 Streaming - The movement of the distribution functions on the

lattice according to the velocity set.

The collision operator Ωi({fj}) is designed to model particle
collision within a system. These collisions must not modify
the conserved quantities of the system.

For diffusive systems, the collision operator must simply fulfill
the following: ∑

i

Ωi({fj}) = 0. (4)

For diffusion, we choose an equilibrium distribution with a
mean zero macroscopic velocity in the form

f0
i = ρwi. (5)
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Integer Lattice Gases

Although the original Boolean LGCA methods had the ability to
model Navier-Stokes equations, due to issues such as Galilean
invariance violations, lattice Boltzmann methods overtook LGCA in
popularity.

It is desirable to find an LGCA from which we can derive recent
versions of LBM.

Recently, Blommel et al. presented a discrete lattice gas method
using integer valued occupation numbers rather than the Boolean
valued occupation numbers in classic LGCA.1

This integer lattice gas (ILG) fully models hydrodynamic behavior
and the discrete nature automatically includes fluctuations and is
evolved by the equation

ni(xi + vi∆t, t+∆t) = ni(x, t) + Ξi({ni}) (6)

where Ξi is a collision operator which uses the Monte Carlo method
to determine collision rules.

1Thomas Blommel and Alexander J Wagner. “Integer Lattice Gas with
Monte Carlo Collision Operator Recovers the Lattice Boltzmann Method with
Poisson-Distributed Fluctuations”. In: Phys. Rev. E 97.2 (2018), p. 023310.
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Overrelaxation for Diffusive Integer Lattice Gas

ILG is evolved by the equation

ni(x+ vi∆t, t+∆t) = ni(x, t) + Ξi({ni}) (7)

where ni are integer valued occupation numbers and Ξi is the
collision operator.

By taking an ensemble average of the occupation numbers to
acquire distribution functions

fi = ⟨ni⟩ (8)

The lattice Boltzmann collision operator can also be found
through an ensemble average

Ωi = ⟨Ξi⟩ = ω(f0
i − fi). (9)

The ILG algorithm is relaxed by a collision probability ω.
For deterministic LBM collisions, ω ∈ {0, 2}.
Since ILG collisions are probabilistic, it is only allowed that
ω ∈ {0, 1}.
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Overrelaxation for Diffusive Integer Lattice Gas

To successfully overrelax ILG, we must have extend the
allowed range of collision probabilities to ω ∈ {1, 2}.
To remedy this mathematical impossibility, a modification to
the collision process is introduced which flips the occupation
numbers such that

Fi(ni) = n−i (10)

where negative indices are interpreted as v−i = −vi, which
modifies Eqn. (7),

ni(x+ vi∆t, t+∆t) = Fi(ni) + Ξi({Fi(ni)}). (11)

This flip will send the particles back to where they were
initially.

In this form, this leads to full overrelaxation (ω = 2), which
fully suppresses diffusion.

Kyle T. Strand Overrelaxation for Diffusive Integer Lattice Gases



14/22

Overrelaxation for Diffusive Integer Lattice Gas

To remedy the full overrelaxation of the flip, we introduce an
additional collision step to the full collision.

This additional collision is then taken with probability
ω∗ ∈ {0, 1} which then determines the chance which a
particle will be chosen to be flipped, thus only permuting a
fraction of the particles which should be equivalent to
overrelaxation seen in LBM.

The limiting case of ω∗ = 1 will redistribute all particles in the
same manner as full relaxation.

With this augmented collision, we can show that this
overrelaxed ILG is equivalent to a diffusive multi-relaxation
time (MRT) LBM.
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Moment Space Representation

Moment space is an eigenvector basis which will allow us to
decouple each mode.

The distribution functions are transformed from velocity space
into moment space. Each moment will contain a degree of
freedom.

The forward transformation into moment space is written

Ma =
∑
i

ma
i fi. (12)

The back transform is

fi =
∑
a

na
iM

a (13)

ma
i and na

i are transformation matrices which have the
orthogonality relations∑

i

na
im

b
i = δab

∑
a

na
im

a
j = δij . (14)
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Moment Space Representation

To properly transform fi to moment space, the transformation
matrix must be defined.

If we define the zeroth moment as the mass, we have M0 = ρ
which is equivalent to

m0
i = (1, . . . , 1) (15)

for any set of n velocities.

The remaining elements of the transformation matrix can be
derived through a Gram-Schmidt orthonormalization.

Since moment space gives access to individual moments, we
can assume that the moment space representation of the
collision matrix is diagnoal such that

Λab =
1

τa
δab (16)

where τa is the relaxation time which corresponds to a given
moment a.
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Moment Space Representation

The construction of this transformation matrix is dependent
on the number of desired modes in the model.

For a D1Q3 model:

ma
i =


1 1 1

0
√

1
θ −

√
1
θ

−
√

θ
1−θ

√
1−θ
θ

√
1−θ
θ

 (17)

For a D2Q5 model:

ma
i =



1 1 1 1 1

0
√

1
θ −

√
1
θ 0 0

0 0 0
√

1
θ −

√
1
θ

0
√

1
2θ

√
1
2θ −

√
1
2θ −

√
1
2θ

−
√

2θ
1−2θ

√
1−2θ
2θ

√
1−2θ
2θ

√
1−2θ
2θ

√
1−2θ
2θ


(18)
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Overrelaxation for Diffusive Integer Lattice Gas

In the Boltzmann limit, Eqn. (11) becomes

fi(x+vi∆t, t+∆t) = Fi [fi(x, t)]+ω{f0
i (x, t)−Fi [fi(x, t)]}

(19)

If we invoke a moment space transformation, we can gain
access to the individual moments of the physical quantities

Ma =

 ∑
i fi∑

i vifi∑
i v

2
i fi

 =

 ρ
j
Π

 . (20)

Applying our flipping operation gives

F (Ma) =

 ρ
−j
Π

 . (21)

In general, all even velocity moments are unaffected by the
flipping operation and all odd moments acquire a negative
sign.
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Overrelaxation for Diffusive Integer Lattice Gas

The effect of the collision is similarly simple such that
conserved quantities are unaffected and non-conserved
quantities are multiplied by the probability ω.

This gives the full effect of the collision operator as

Ma +Ωa =

 ρ
(1− ωj)j
(1− ω)Π

 (22)

where we have introduced ωj = 2− ω.

With this, the corresponding lattice Boltzmann equation
becomes

fi(x+ vi∆t, t+∆t) =
∑
a

wim
a
i (1− ωa)ma

j (f
0
j − f j), (23)

where ma
i are moment space transformation matrices.
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Overrelaxation for Diffusive Integer Lattice Gas

Taking the Boltzmann limit of Eqn. (23), we obtain the
diffusion equation

∂tρ = −D∇2ρ (24)

with a diffusion constant of

D = θ

(
1

ωj
− 1

2

)
. (25)

This is equivalent to a diffusive MRT LBM where
overrelaxation can be achieved in the range ωj ∈ [1, 2].
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Overrelaxation for Diffusive Integer Lattice Gas

To verify that this flipping operation does give overrelaxation, we
can examine the amplitude of a decaying of a sine wave:

ALG(t) =

∑
x sin

(
2πx
L

)
N(x, t)∑

x sin
2
(
2πx
L

) . (26)

0 1×10
5

2×10
5

3×10
5

4×10
5

5×10
5

Time Steps

0.1

1

10

100

1000

A
m

p
li

tu
d
e

ω
j
 = 0.5

ω
j
 = 0.75

ω
j
 = 1.0

ω
j
 = 1.25

ω
j
 = 1.5

ω
j
 = 1.75

ω
j
 = 2.0 

We see good agreement between the measured simulation data
(symbols) and the theoretical prediction (solid lines) from Eqn.

(26) both inside and outside the over-relaxation regime. This data
was a result of the average of 500 individual simulations on a

D1Q3 lattice with size L = 320 and Nave = 100.
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Conclusions and Outlook

We have presented a method for implementing overrelaxation
into integer lattice gases.

We achieve this by introducing a flipping operation to the
occupation numbers which will send send the particles back to
where they came from.
We introduce a second augmentation to the collision process
which then will choose a fraction of particles to actually flip
with probability ω∗.
This method allows us to mimic probabilities greater than 1
which was why overrelaxation was conventionally thought to
be impossible for lattice gas methods.

We hope to generalize this overrelaxation method to the
hydrodynamic case.

Develop a formalism for ILG collisions?
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