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Introduction

DNS of a turbulent channel flow with a passive scaler (ultraFluidX, Altair Engineering)

• Fluid dynamics is relevant for a 
wide range of applications.

• Only few analytical solutions exist 
(limiting cases).

• We need numerical methods to 
solve them

Molecular Dynamics Simulations

Lattice Boltzmann Methods (LBM)

Discretization of the 
Navier-Stokes Equation

Heated cylinder (OpenLB, KIT)
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• There is a “Zoo” of LBM collision operators…

Motivation

… and there is no established method to derive these collision operators from first principles.

We develop an analysis tool which derives the LBM from Molecular Dynamics 
simulations.
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• Microscale – tracks the evolution of individual 
particles (Newtonain dynamics, Molecular
Dynamics Simulation)

• Mesoscale – tracks the evolution of a 
distribution of particles (Boltzmann equation, 
LGCA, LBM,…) 

• Macroscale – observables are quantities such as
velocity and density (Navier Stokes Equation)

Fluid Dynamics Length and Time Scales
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Microscale

Mesoscale

Macroscale

How can we bring some of the microscale 
properties to the mesoscale/macroscale?

What happens if we coarse-grain a 
Molecular Dynamics simulation?
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We can describe individually the fluid molecules using their positions 𝑥𝑖 𝑡 and velocities 𝑣𝑖 𝑡 . The 
interaction between atoms is described through appropriate forces 𝑓𝑖(𝑡). The evolution of atoms is 
given by the Newton’s second law:

Even though this approach is very successful, it is not typically used because of it's too expensive 
even with the current HPC technologies.

Molecular Dynamics

“Molecular Dynamics approximates a real physical system” 
– Statistical Mechanics: Theory and Molecular Simulation by M. Tuckerman
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The kinetic theory of gases is considered a brigde between the microscale (motion of individual 
particles) and the macroscale (quantities such as density and velocity).

The Boltzmann Equation is given by

The LBM is considered a numerical solver for the Boltzmann equation. However, for regimes where a 
good solution for the Boltzmann equation is needed, the LBM is not applicable due to the small 
number of discrete velocities. 

This link to kinetic theory enables LBM to simulate phenomena beyond the hydrodynamic limit. 

Boltzmann Equation

𝑓 – probability density function
𝜉 – particle velocity
Ω – collision rule (redistributes 𝑓)

advection forcing collision
rule

𝜕𝑓
𝜕𝑡 + 𝜉&

𝜕𝑓
𝜕𝑥&

+
𝐹&
𝜌
𝜕𝑓
𝜕𝜉&

= Ω(𝑓)
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Lattice-Gas Cellular Automata are much cheaper than MD simulations. In LG the atoms 
are restricted to lattice nodes 𝑥 and can move only to neighboring lattice sites 𝑥 + 𝛿𝑥𝑖. 
The local density and momentum are given by

The LGCA evolution equation reads

with Ξ𝑖 being the collision operator and obeys conservation of mass and momentum.

Lattice-Gas Cellular Automata (LGCA)

The main characteristics of the LG are
• fully fluctuating model
• statistical noise 
• many collisions to consider in higher dimensions

𝑛# 𝑥 + 𝛿𝑥#, 𝑡 + 𝛿𝑡 = 𝑛# 𝑥, 𝑡 + Ξ#(𝑥, 𝑡),

𝜌 𝑥, 𝑡 = '
(!
∑# 𝑛# 𝑥, 𝑡 ; 𝜌 𝑥, 𝑡 𝑢 𝑥, 𝑡 = '

(!
∑# 𝑐#𝑛#(𝑥, 𝑡)
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The BGK-LBM evolution equation is given by

which can be divided into two simple steps:

The collision rule relaxes the populations towards equilibrium at some relaxation rate:

The equilibrium distribution function is given by the second-order truncation of the Maxwell-Boltzmann 
distribution function

Lattice Boltzmann Method
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𝑓#∗ 𝑥, 𝑡 = 𝑓# 𝑥, 𝑡 + Ω#(𝑥, 𝑡)
𝑓# 𝑥 + 𝑐#Δ𝑡, 𝑡 + Δ𝑡 = 𝑓#∗ 𝑥, 𝑡

𝑓# 𝑥 + 𝑐#Δ𝑡, 𝑡 + Δ𝑡 = 𝑓# 𝑥, 𝑡 + Ω#(𝑥, 𝑡)
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In LBM, the BGK evolution equation can evolve in 𝑓𝑖 immediately or even past 𝑓𝑖
𝑒𝑞 .

Depending on the value of  ⁄𝜏 Δ𝑡, we define three regimes of the collision operator:

Lattice Boltzmann Method

Source: T. Krüger et al., 
The Lattice Boltzmann Method (2018)

𝑓# 𝑥 + 𝑐#Δ𝑡, 𝑡 + Δ𝑡

= 1 +
Δ𝑡
𝜏 𝑓# 𝑥, 𝑡 +

Δ𝑡
𝜏 𝑓#

)*(𝑥, 𝑡)

Under-relaxation 𝜏
𝛥𝑡
> 1 : 𝑓𝑖 decays exponentially towards 𝑓𝑖

𝑒𝑞;

Full relaxation 𝜏
Δ𝑡
= 1 : 𝑓𝑖 decays directly towards 𝑓𝑖

𝑒𝑞;

Over-relaxation 1
2
< 𝜏

𝛥𝑡
< 1 : 𝑓𝑖 oscillates around 𝑓𝑖

𝑒𝑞 with an exponentially decreasing amplitude.
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Algorithm:
1. Impose a lattice with spacing 𝛥𝑥 onto the MD 

simulation.
2. Track the current position and the position displaced 

by 𝑐𝑖 after a time step 𝛥𝑡.

Molecular Dynamics Lattice Gas
Time  𝑡

then the MDLG evolution equation is
𝑛𝑖 𝑥 + 𝑐𝑖, 𝑡 + Δ𝑡 = 𝑛𝑖 𝑥, 𝑡 + Ξ𝑖,

Ξ𝑖 = 𝑛𝑖 𝑥 + 𝑐𝑖, 𝑡 + Δ𝑡 − 𝑛𝑖 𝑥, 𝑡

The occupation number 𝑛𝑖(𝑥, 𝑡) is given by 

and the collision term is then defined as

𝑛𝑖 𝑥, 𝑡 =+
𝑗

Δ𝑥 𝑥𝑗 𝑡 Δ89:" xj t − Δ𝑡 ,
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Algorithm:
1. Impose a lattice with spacing 𝛥𝑥 onto the MD 

simulation.
2. Track the current position and the position displaced 

by 𝑐𝑖 after a time step 𝛥𝑡.

Molecular Dynamics Lattice Gas
Time  𝑡

then the MDLG evolution equation is
𝑛𝑖 𝑥 + 𝑐𝑖, 𝑡 + Δ𝑡 = 𝑛𝑖 𝑥, 𝑡 + Ξ𝑖,

Ξ𝑖 = 𝑛𝑖 𝑥 + 𝑐𝑖, 𝑡 + Δ𝑡 − 𝑛𝑖 𝑥, 𝑡

The occupation number 𝑛𝑖(𝑥, 𝑡) is given by 

and the collision term is then defined as

𝑛𝑖 𝑥, 𝑡 =+
𝑗

Δ𝑥 𝑥𝑗 𝑡 Δ89:" xj t − Δ𝑡 ,
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Algorithm:
1. Impose a lattice with spacing 𝛥𝑥 onto the MD 

simulation.
2. Track the current position and the position displaced 

by 𝑐𝑖 after a time step 𝛥𝑡.

Molecular Dynamics Lattice Gas

then the MDLG evolution equation is
𝑛𝑖 𝑥 + 𝑐𝑖, 𝑡 + Δ𝑡 = 𝑛𝑖 𝑥, 𝑡 + Ξ𝑖,

Ξ𝑖 = 𝑛𝑖 𝑥 + 𝑐𝑖, 𝑡 + Δ𝑡 − 𝑛𝑖 𝑥, 𝑡

The occupation number 𝑛𝑖(𝑥, 𝑡) is given by 

and the collision term is then defined as

Time  𝑡
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𝑛𝑖 𝑥, 𝑡 =+
𝑗

Δ𝑥 𝑥𝑗 𝑡 Δ89:" xj t − Δ𝑡 ,
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Algorithm:
1. Impose a lattice with spacing 𝛥𝑥 onto the MD 

simulation.
2. Track the current position and the position displaced 

by 𝑐𝑖 after a time step 𝛥𝑡.

Molecular Dynamics Lattice Gas

then the MDLG evolution equation is
𝑛𝑖 𝑥 + 𝑐𝑖, 𝑡 + Δ𝑡 = 𝑛𝑖 𝑥, 𝑡 + Ξ𝑖,

Ξ𝑖 = 𝑛𝑖 𝑥 + 𝑐𝑖, 𝑡 + Δ𝑡 − 𝑛𝑖 𝑥, 𝑡

The occupation number 𝑛𝑖(𝑥, 𝑡) is given by 

and the collision term is then defined as

Time  𝑡
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𝑛𝑖 𝑥, 𝑡 =+
𝑗

Δ𝑥 𝑥𝑗 𝑡 Δ89:" xj t − Δ𝑡 ,
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Algorithm:
1. Impose a lattice with spacing 𝛥𝑥 onto the MD 

simulation.
2. Track the current position and the position displaced 

by 𝑐𝑖 after a time step 𝛥𝑡.

Molecular Dynamics Lattice Gas

then the MDLG evolution equation is
𝑛𝑖 𝑥 + 𝑐𝑖, 𝑡 + Δ𝑡 = 𝑛𝑖 𝑥, 𝑡 + Ξ𝑖,

Ξ𝑖 = 𝑛𝑖 𝑥 + 𝑐𝑖, 𝑡 + Δ𝑡 − 𝑛𝑖 𝑥, 𝑡

𝑛𝑖 𝑥, 𝑡 =+
𝑗

Δ𝑥 𝑥𝑗 𝑡 Δ89:" xj t − Δ𝑡 ,

The occupation number 𝑛𝑖(𝑥, 𝑡) is given by 

and the collision term is then defined as

Time  𝑡 + Δ𝑡
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Algorithm:
1. Impose a lattice with spacing 𝛥𝑥 onto the MD 

simulation.
2. Track the current position and the position displaced 

by 𝑐𝑖 after a time step 𝛥𝑡.

Molecular Dynamics Lattice Gas

then the MDLG evolution equation is
𝑛𝑖 𝑥 + 𝑐𝑖, 𝑡 + Δ𝑡 = 𝑛𝑖 𝑥, 𝑡 + Ξ𝑖,

Ξ𝑖 = 𝑛𝑖 𝑥 + 𝑐𝑖, 𝑡 + Δ𝑡 − 𝑛𝑖 𝑥, 𝑡

𝑛𝑖 𝑥, 𝑡 =+
𝑗

Δ𝑥 𝑥𝑗 𝑡 Δ89:" xj t − Δ𝑡 ,

The occupation number 𝑛𝑖(𝑥, 𝑡) is given by 

and the collision term is then defined as

Time  𝑡 + Δ𝑡
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This is an Integer Lattice Gas description that 
measures exactly the coarse-grained properties 

of the underlying physical system.



186/29/22 186/29/22

If we average over an ensample of MD simulations in the same macroscopic state, we obtain a 
description which resembles the LBM

Molecular Dynamics Lattice Boltzmann

𝑓#(𝑥 + 𝑐#, 𝑡 + Δ𝑡) = 𝑓#(𝑥, 𝑡) + Ω#(𝑥, 𝑡),
Ω#(𝑥, 𝑡) = Ξ# =)*.collision rule:

We use these measurements as a ground-truth to compare to our theoretical 
description of the MDLG/MDLB models.

𝑓#(𝑥, 𝑡) = 𝑛# =)*,

The theoretical description of the MDLB-𝑓#(𝑥, 𝑡) is defined as a double integral over a one-particle 
displacement probability distribution function, given by 

𝑓# (𝑥, 𝑡) = 𝑛# $%& = )
'

Δ( 𝑥' 𝑡 Δ)*+! x, t − Δ𝑡
$%&

= 𝑁∫𝑑𝑥- ∫𝑑𝛿𝑥-𝑃 - 𝑥-, 𝛿𝑥-, 𝑡, Δ𝑡 Δ( 𝑥- Δ(*."[𝑥- − 𝛿𝑥-]

evolution equation:

probability distribution function:
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• The simplest system we can analyze is one in equilibrium:
• The probability distribution function is stationary in time
• The collision rule is equal to zero

Molecular Dynamics Lattice Boltzmann

We measure 𝑓𝑖
𝑒𝑞 from an underlying MD 
simulation 

1. Running MD simulations (using LAMMPS)
2. Postprocessing the MD simulations using the 

MDLB tool
3. Varying the discretization in time and space (Δ𝑡

and Δ𝑥)  to obtain results from a ballistic to 
diffusive description

4. Measuring the equilibrium probability distribution 
function (𝑓!

#$) and compare it to theory from the 
moments ( 𝛿𝑥 " , 𝛿𝑦 " , ⟨𝛿𝑥𝛿𝑦⟩).
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• The simplest system we can analyze is one in equilibrium:
• The probability distribution function is stationary in time
• The collision rule is equal to zero

Molecular Dynamics Lattice Boltzmann

We measure 𝑓𝑖
𝑒𝑞 from an underlying MD 
simulation 

1. Running MD simulations (using LAMMPS)
2. Postprocessing the MD simulations using the 

MDLB tool
3. Varying the discretization in time and space (Δ𝑡

and Δ𝑥)  to obtain results from a ballistic to 
diffusive description

4. Measuring the equilibrium probability distribution 
function (𝑓!

#$) and compare it to theory from the 
moments ( 𝛿𝑥 " , 𝛿𝑦 " , ⟨𝛿𝑥𝛿𝑦⟩).

We obtain a theory based on the probability of 
displacements in equilibrium

1. Since 𝑃 - 𝑥-, 𝛿𝑥-, 𝑡, Δ𝑡 is Gaussian distributed for 
very short and very long times, originally, it was 
assumed that it is Gaussian throughout

2. Thus, the MDLB equilibrium distribution function is 
described by

3. The solution factorizes for higher dimensions
4. We need to integrate over the position and the 

displacements in each dimension

𝑃%& 𝛿𝑥 =
1

2𝜋 𝛿𝑥% " ⁄( ) exp −
𝛿𝑥% − 𝑢%Δ𝑡 "

2⟨ 𝛿𝑥% "⟩
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• The simplest system we can analyze is one in equilibrium:
• The probability distribution function is stationary in time
• The collision rule is equal to zero

Molecular Dynamics Lattice Boltzmann

We measure 𝑓𝑖
𝑒𝑞 from an underlying MD 
simulation 

We obtain a theory based on the probability of 
displacements in equilibrium

Parsa et al. found this theoretical description matches the measured equilibrium distribution 
function from MD.

But a question remains…
To what extend is this theoretical description valid?  
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• We vary the volume fraction 𝜙 of the system and compare 𝑓:; measured from
MD and estimated from theory using the measured 𝛿𝑥 < from MD

Validity of the MDLB equilibrium distribution function

𝜙 = 0.8722

The single Gaussian distirbution function is a good description for the measured 𝑓%& from MD  

𝜙 = 0.0078 𝜙 = 0.0785

𝜙 = 0. 1962 𝜙 = 0. 8722

Source: M. R. Parsa, A. Pachalieva and A. J. Wagner, ”Validity of the Molecular-Dynamics-Lattice-Gas Global Equilibrium Distribution Function”, 
International Journal of Modern Physics C, Vol. 30, No. 10, 1941007 (2019)”
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When trying to estimate the collision rule from coarse-graining of MD simulation, we observed that
the collision operator does not relax towards the 𝑓𝑖

𝑒𝑞(𝑥, 𝑡) obtained from a single Gaussian.

This is concerning because in hydrodynamics, the system of interest is not too far from equilibrium, 
thus even small deviations in the equilibrium distribution function play a crucial role.

The only assumption for the derivation of 𝑓𝑖
𝑒𝑞(𝑥, 𝑡) is that 𝑃 1 (𝑥1, 𝛿𝑥1, 𝑡, Δ𝑡) is Gaussian distributed 

which must be flawed.

Towards non-equilibrium dynamics

𝑓# 𝑥, 𝑡 − 𝑓#
%& 𝑥, 𝑡 > 𝑓#(𝑥, 𝑡) + Ω#(𝑥, 𝑡) − 𝑓#

%&(𝑥, 𝑡)

A key interest of having a good approximation of the equilibrium distribution function is to
analyze non-equilibrium predictions of the MDLB mapping, which would be nearly impossible 

without an in-depth understanding of its equilibrium behavior. 
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How to measure the discrepancies between probability distribution functions?

Non-Gaussian MDLB equilibrium distribution function

We consider the distribution function to be a mixture of Gaussian distribution functions that have 
undergone a number of collisions given by a Poisson distribution.

𝑃𝑊𝑆𝐺(𝛿𝑥) =)
𝑐=0

∞

𝑒−𝜆
𝜆𝑐

𝑐!
(𝜆 + 1)

2𝜋(𝑐 + 1)⟨ 𝛿𝑥 2⟩
exp −

𝜆 + 1 𝛿𝑥 − 𝑢Δ𝑡 9

2(𝑐 + 1)⟨ 𝛿𝑥 2⟩

Kullback-Leibler divergence

Do collisions change the probability of certain displacements to occur?

Use an alternative displacement probability distribution function which considers the average number 
of collisions (𝜆) a particle has experienced.

The only assumptions we make is that the collisions are evenly spread instead of the more physical 
random collisions

Poisson Weighted Sum of 
Gaussians

𝐷𝐾𝐿(𝑅| 𝑄 =)
𝑖

𝑅 𝑋𝑖 log
𝑅(𝑋𝑖)
𝑄(𝑋𝑖)
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λ2 )

This is more complex 𝑃 1 (𝛿𝑥) and to close to system we 
need a good approximation of the average number of 
collisions 𝜆 using the second- and fourth-order moments 
( 𝛿𝑥 2 and ⟨ 𝛿𝑥 4⟩).

In extreme regimes (purely ballistic or purely diffusive) this 
description reduces again to a single Gaussian distribution 
function.

Follows much closely the measured probability distribution 
function of displacements.

Non-Gaussian MDLB equilibrium distribution function

The Poisson Weighted Sum of Gaussians shows a better agreement with the probability distribution 
function of displacements measured from MD simulations.

Source: A. Pachalieva and A. J. Wagner, ”Non-Gaussian distribution of displacements for Lennard-Jones particles in equilibrium”, Physical Review E, 102(5), 053310 (2020) [83]
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𝑓#$,&' − symbols 
𝑓#$,( − dotted 
𝑓#$,)*( − dashed

Non-Gaussian MDLB equilibrium distribution function

The WSG equilibrium distribution function captures much better the measured equilibrium distribution 
function from MD simulations.

We apply the 𝑃𝑊𝑆𝐺(𝛿𝑥) to obtain a new 
equilibrium distribution function 𝑓𝑖

𝑒𝑞

1. The solution factorizes for higher 
dimensions

2. We need to integrate over the 
position and the displacements in 
each dimension

3. We keep 𝑎2 = ⁄⟨(𝛿𝑥)2⟩ Δ𝑥2 = 𝑐𝑜𝑛𝑠𝑡
𝑓! = 𝑛! 5#$

Source: A. Pachalieva and A. J. Wagner, ”Molecular dynamics lattice gas equilibrium distribution function for Lennard-Jones particles”, Philosophical Transactions of the Royal Society A, (2021)

= 𝑁∫𝑑𝑥( ∫𝑑𝛿𝑥(𝑃 ( 𝑥(, 𝛿𝑥(, 𝑡, Δ𝑡 Δ6 x( Δ678![x( − 𝛿𝑥(]
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Non-Gaussian MDLB equilibrium distribution function

The WSG equilibrium distribution function captures much better the measured equilibrium distribution 
function from MD simulations.

We apply the 𝑃𝑊𝑆𝐺(𝛿𝑥) to obtain a new 
equilibrium distribution function 𝑓𝑖

𝑒𝑞

1. The solution factorizes for higher 
dimensions

2. We need to integrate over the 
position and the displacements in 
each dimension

3. We keep 𝑎2 = ⁄⟨(𝛿𝑥)2⟩ Δ𝑥2 = 𝑐𝑜𝑛𝑠𝑡
𝑓! = 𝑛! 5#$

Source: A. Pachalieva and A. J. Wagner, ”Molecular dynamics lattice gas equilibrium distribution function for Lennard-Jones particles”, Philosophical Transactions of the Royal Society A, (2021)

= 𝑁∫𝑑𝑥( ∫𝑑𝛿𝑥(𝑃 ( 𝑥(, 𝛿𝑥(, 𝑡, Δ𝑡 Δ6 x( Δ678![x( − 𝛿𝑥(]
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Non-Gaussian MDLB equilibrium distribution function

The WSG equilibrium distribution function captures much better the measured equilibrium distribution 
function from MD simulations.

We apply the 𝑃𝑊𝑆𝐺(𝛿𝑥) to obtain a new 
equilibrium distribution function 𝑓𝑖

𝑒𝑞

1. The solution factorizes for higher 
dimensions

2. We need to integrate over the 
position and the displacements in 
each dimension

3. We keep 𝑎2 = ⁄⟨(𝛿𝑥)2⟩ Δ𝑥2 = 𝑐𝑜𝑛𝑠𝑡
𝑓! = 𝑛! 5#$

Source: A. Pachalieva and A. J. Wagner, ”Molecular dynamics lattice gas equilibrium distribution function for Lennard-Jones particles”, Philosophical Transactions of the Royal Society A, (2021)

= 𝑁∫𝑑𝑥( ∫𝑑𝛿𝑥(𝑃 ( 𝑥(, 𝛿𝑥(, 𝑡, Δ𝑡 Δ6 x( Δ678![x( − 𝛿𝑥(]
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Non-Gaussian MDLB equilibrium distribution function

29M.Sc. Aleksandra Pachalieva (TUM) | Rigorosum | 02. June 2022

The WSG equilibrium distribution function captures much better the measured equilibrium distribution function from 
MD simulations.

Source: A. Pachalieva and A. J. Wagner, ”Molecular dynamics lattice gas equilibrium distribution function for Lennard-Jones particles”, Philosophical Transactions of the Royal Society A, (2021)

We apply the 𝑃=>?(𝛿𝑥) to obtain a new 
equilibrium distribution function 𝑓#

%&

1. The solution factorizes for higher 
dimensions

2. We need to integrate over the 
position and the displacements in 
each dimension

3. We keep 𝑎9 = ⁄⟨(𝛿𝑥)9⟩ Δ𝑥9 = 𝑐𝑜𝑛𝑠𝑡

𝑓+ = 𝑛+ ,#$

= 𝑁∫𝑑𝑥- ∫𝑑𝛿𝑥-𝑃 - 𝑥-, 𝛿𝑥-, 𝑡, Δ𝑡 Δ. x- Δ./0![x- − 𝛿𝑥-]



306/29/22 306/29/22

• symmetric system; 

• averaging in space (Galilean transformation);

• averaging in time (steady state);

• linear velocity profile given by the shear rate.

Non-equilibrium system
Simple shear flow

𝑢9 = �̇�𝑦

𝑢: = 0
Collecting and postprocessing sufficient data from MD was 
not trivial:
• To ensure sufficient averaging in space we use Galilean 

transformation
• We allow for the system to fully develop before we start 

collecting data to ensure that it has reached steady state 
and we can average in time

LAMMPS:
• The MD simulations are performed by LAMMPS using the 

Lees-Edwards boundary conditions
• We use LAMMPS nvt/sllod thermostat to generate 

the desired non-equilibrium dynamics 

The MDLG Tool can be found at:
https://gitlab.lrz.de/ga35pak/MDLG_GUI
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• symmetric system; 

• averaging in space (Galilean transformation);

• averaging in time (steady state);

• linear velocity profile given by the shear rate.

MDLB collision operator
Simple shear flow

𝑢9 = �̇�𝑦

𝑢: = 0

𝑀=,∗ = 𝑀= + 𝛺=
𝑀= = 𝑓? − 𝑓@ + 𝑓A − 𝑓B

Ω= = Ω? − Ω@ + ΩA − ΩB

ΩC = ΩD + ΩE

Pre-collision: 

Post-collision: 

𝜏 =
𝑀=

𝑀= −𝑀=,∗

𝑀=,∗ = 𝑀= +
1
𝜏
(𝑀=,FG −𝑀=)

The relaxation time is equal to 

= 0

How to measure the collision operator from MD?

Source: A. Pachalieva and A. J. Wagner, ” Connecting lattice Boltzmann methods to physical reality by coarse-graining Molecular Dynamics simulations”, arXiv:2109.05009, (2021)

ΩH = 𝑓H 𝑥 + 𝑐H , 𝑡 + Δ𝑡 − 𝑓H(𝑥, 𝑡)
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MDLB collision operator
Simple shear flow

𝑢9 = �̇�𝑦

𝑢: = 0

Now we need a theory for the MDLB collision operator.

• 𝑓𝑖 can be expressed in terms of one-particle probability 
distribution function.

• In the diffusive limit an analytical solution exists, and it 
is given by a multivariate Gaussian probability 
distribution:

𝑃 𝑥, 𝑦, 𝛿𝑥, 𝛿𝑦 =

− ⟨(𝛿𝑥)"⟩
𝛿𝑥𝛿𝑦 " +

4
⟨(𝛿𝑦)"⟩

2𝜋 ⟨(𝛿𝑥)"⟩
𝑒𝑥𝑝 −

𝛿𝑥 − 𝑦�̇�Δ𝑡 "

⟨(𝛿𝑥)"⟩
−

𝛿𝑥 − 𝑦�̇�Δ𝑡 𝛿𝑦
⟨𝛿𝑥𝛿𝑦⟩

−
𝛿𝑦 "

⟨(𝛿𝑦)"⟩

Again, to obtain the probability distribution function 𝑓# 𝑥, 𝑡 we need to integrate over the positions 
(𝑥, 𝑦) and displacements (𝛿𝑥, 𝛿𝑦)
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MDLB collision operator

For the modest shear considered here ( �̇�Δ𝑡 2 ≪ 3),
The measured moments are

𝛿𝑥 2 ≈ 𝛿𝑦 2 ≈ 𝛿𝑥 2 𝑒𝑞

Thus, the key change is in the off-diagonal moment 𝛿𝑥𝛿𝑦 .

Ballistic behavior 
à collisions are rare, and particles carry memory of their 
history over larger distances

Diffusive behavior 
à memory is quickly lost in frequent collisions
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MDLB collision operator

= 0

DDF in Ballistic Regime
UR

DDF in Diffusive Regime
OR

No collisions
“Memory effect”

In diffusive case any memory is quickly lost in frequent collisions, while in ballistic case, collisions are 
rare, and particles carry a memory of their history over larger distances. 

* *

* exaggerated sketch 

Many collisions
“No memory effect”
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1. In general, LGCG do not show over-relaxation.

2. In [F. Bösch et al., PRL 111(9), 090601] the authors 
prove that over-relaxation cannot be achieved 
from kinetic theory.

MDLB collision operator

Over-relaxation is considered to be a numerical trick 
to simulate low viscosity flows. 

The MDLB collision operator
naturly transitions from under- to over-relaxation.

Thus, LBM‘s over-relaxation can be derived from first
principles and it is a cosequence of the coarse-grained

representation of the LBM.
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MDLB in the context of LBM

Molecular Dynamics Lattice 
Boltzmann (MDLB)

Lattice-Gas Cellular
Automata (LGCA)

/physics/

Lattice Boltzmann Method (LBM)

Navier-Stokes Equation 
(NSE)

/engineering/

Boltzmann 
Equation (BE)
/mathematics/

Molecular Dynamics Lattice Gas 
(MDLG)
/physics/

Molecular Dynamics
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• Novel derivation method for the LBM from an underlying MD simulation
• To achieve this we only track the migration of particles between coarse-grained time steps, which is

sufficient to derive the LBM

• MDLB restores the broken link between LBM and it‘s microscopic nature

Conclusions
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• MDLB has proven useful for understanding key elements of the LBM such as the equilibrium distribution
function and collision operator

• We could show that the most frquently used property of the LBM – over-relaxation, arises naturally
from physical lattice gases

Conclusions
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• True form of the collision operator: how does it relate to known collision operators?

• Apply MDLG to more complex flows such as looking at fluctuations, forcing terms, boundary 
conditions, multi-phase and multi-component systems, thermal models

Outlook
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Thank you for your attention!


