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What we are looking at

We see a moving substances that has

multiple phases (water, ice, air/gas)

We would like to “understand” how

the substances that make up our en-

vironment evolve.

But how can one understand some-

thing complex like this?
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Physics of Fluids

At first glance the fluid looks like a continuous matter, and it makes sense to describe
it in terms of continuous fields describing the density, momentum and energy of the
matter.

But how do these fields evolve?

The answer to this is not obvious. There are three conservation principles:

1. mass
∫
ρ(x, t)dx = const

2. momentum
∫
jα(x, t)dx = const

3. energy
∫
e(x, t)dx = const

Why are those the conserved quantities? We don’t know, and those are not entirely
fundamental either, since mass can be transformed into energy and back according
to E = mc2. In principle there could be more or fewer, but these conservations are
experimental facts in the regime we are interested in.
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Basic evolution principles for fields

We can re-state the conservation principles in terms of partial differential equations

(related to Gauss’ Theorem)

∂tρ+∇αjα = 0 (1)

∂tjα+∇αΠαβ = 0 (2)

∂te+∇αqα = 0 (3)

where the mass-current jα is equal to the momentum current, making the first

equation, the continuity equation, fully defined.

The momentum flux tensor Παβ is a new quantity, for which we will require a

constitutive equation.

The energy flux qα is also a new vector field for which we need a constitutive equation.

This is exact, but only useful when we have expressions for Παβ and qα in terms of

ρ, jα and e.
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Constitutive laws

In certain well-behaved situations the dynamics will be purely described in terms of

the conserved quantities (and their derivatives). This is because local relaxation to

equilibrium is much faster, but the conserved quantities have to move to establish

equilibrium.

In those situations where the evolution is completely dominated by the slow relaxation

of the conserved quantities, one can take a hydrodynamic limit and express the

evolution purely in terms of the conserved quantities.
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Constitutive laws (cont)

The momentum flux tensor consists of the advection of momentum as well as the

diffusion of momentum. We can define a fluid velocity as uα = jα/ρ. This gives

Παβ = jαuβ + νρ(∇αuβ +∇βuα −
d

2
∇γuγδαβ) + ζ∇γuγδαβ (4)

and ν is called the shear viscosity and ζ is called the bulk viscosity. This simple

constitutive equation corresponds to Newtonian viscosity and is not fundamental.

Many fluids have more complex momentum flux, and viscoelastic fluids have addi-

tional memory, leading not just to a different constitutive law, but actually a separate

evolution equation for the stress.

The simplest constitutive law for the energy is

qα = euα+∇βσαβ + κ∇αkBT (5)

where σαβ is the second part of the momentum transport tensor above and the

temperature is the kinetic energy that is not part of the advection velocity. We have

a new transport coefficient, the heat conductivity κ.
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Hydrodynamics

We have now described the evolution of a continuous fluid in terms of partial differ-

ential equations entirely in terms of the fields of conserved quantities.

While this is not exact, for most practical applications this is an entirely satisfactory

description. Examples of exceptions would be very non-equilibrium situations where

the spatial and local relaxation occur on similar time-scales.
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Nature is discrete

It had long been suspected (Democritus and the Epicureans that followed his ideas

like Lucretius) that matter is actually made up of discrete building blocks, which

Democritus called Atoms.

This idea was only universally accepted after Einstein explained Browninan motion

in terms of atomic collisions of discrete water molecules with larger (visible under a

microscope) suspended particles.

This means that our continuous description is actually incorrect. A more correct

description of the motion of our fluid should be molecular.
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Molecular nature of matter

We have discrete molecules that interact with each other. A fundamental description

would allow for a quantum mechanical description of those fundamental components

of nature.

For this we would take into account the internal structure of atoms and would have to

describe the evolution of nuclei and electron clouds in terms of a quantum mechanical

evolution equation (say a Schrödinger equation for non-relativistic particles:

iℏ∂tψ({xi}, t) = Hψ({xi}, t) (6)

where the Hamiltonian H is an operator that gives the energy of a particular configu-

ration. The many-particle wavefunction ψ is related to finding particles in a particular

configuration {xi} when a measurement takes place with a probability of
∫
ψψ∗dx.

A more correct relativistic description would also include creation and anihilation of

particles as well as the interactions of photons with matter.

We now describe the evolution of our fluid with the help of a complex partial differ-

ential equation that gives us the probability of finding a certain configuration.
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A classical description

Sometimes a quantum mechanical description is essential, as is the case for liquid

helium at very low temperatures where it can experience a fascinating phenomenon

called superfluidity. [see https://physicstoday.scitation.org/doi/10.1063/PT.3.4067]

Often, as in the example of our flowing water, it is sufficient to describe the discrete

components classically as particles with some two-particle interaction potentials that

only depend on the distance of the particles (and possibly their orientation).

Their evolution is then given by Newton’s second equation:

∂2t xi(t) =
Fi({xi}
m

(7)

Because this is a second order ordinary differential equation you need both the

positions and the first time derivative of the positions (i.e. the velocities) to fully

describe an initial configuration that you can evolve using this equation.

9



Models in Physics

We have now seen that we can derive very different models for our fluid, and these

models don’t seem very similar. But if they are models of the same real systems,

they will have to make the same predictions at the level where they are supposed to

be applicable to the same system. But clearly these models are not equivalent, since

some make more detailed predictions than others, and at some scales they clearly

disagree. We would still consider them valid if those disagreements occur in regions

where we don’t expect them to be valid.
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Regions of applicability

1. Quantum description: gives the probability of finding particles at positions, but

the evolution of the wave-function is deterministic, but measurement is a non-

continuous process. In principle holds for all length and time-scales, but even

numerically can only be solved for very small systems of a few particles (≈ 10)

for short times.

2. Classical particle description: allows for many particles (≈ 106) and longer times.

But still only hundereds of nanometers and picoseconds.

3. Classical hydrodynamical field description: allows for examination of macroscop-

ically large systems.
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Equivalence of descriptions

This only makes sense, if we can show that these very different descriptions are

actually consistent. We won’t talk about deriving Newton’s equations from the

Schrödinger equation (something where Ehrenfest’s theorem comes to play) but only

the second part of deriving the hydrodynamic equations from the classical molecular

description.

The basic plan is:

• Newtons equation to Liouville equation

• Liouville equation over BBGKY hirarchy to Boltzmann description

• Boltzmann equation to Navier-Stokes equation
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Newton to Liouville

Measurements have only finite accuracy. So we can’t know the initial conditions to

solve Newton’s equation. But we can define a probability density of initial conditions

ρ({xi(0), vi(0)}) consistent with our measurement. and examine how this ensemble

of initial conditions will evolve:

∂tρ({xi, vi}) +
∑
i

[
vi∂xiρ({xi, vi}) +

Fi
m

∇viρ({xi, vi})
]
= 0 (8)

which is essentially a continuity equation for the evolution of the ensemble of con-

figurations in phase-space and we have used the fact that

dxi
dt

= vi (9)

dvi
dt

=
Fi
mi

(10)

.
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Liouville to BGKYY

From the phase-space density for N particles we can obtain distribution functions

for a smaller numbers of particles. For simplicity we assume that there is only one

kind of identical particle here. The extension to multiple species is straightforward.

fs({xi, vi}) =
N !

(N − s)!

∫
dxs+1 · · · dxNdvs+1 · · · dvNρ({xi, vi}) (11)

For the evolution of these s particle distribution functions we get

∂tf
s({xi, vi}) =

N !

(N − s)!

∫
dxs+1 · · · dxNdvs+1 · · · dvN∂tρ({xi, vi}) (12)

=−
N !

(N − s)!

∫
dxs+1 · · · dxNdvs+1 · · · dvN

∑
i

[
vi∂xiρ+

Fi
m
∂viρ

]
(13)

From this we get

∂tf
s+ v∇xf

s+
F

m
∇v = −

∫
vs+1∇xs+1f

s+1 +
F s+1

m
∇vs+1f

s+1 (14)

which is known as the BBGKY hierarchy.
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BBGKY to Boltzmann

If we look at the evolution of the one-particle distribution function we get:

∂tf(x, v, t) + vi∇f(x, v, t) +
F

m
=
∫
dx2dv2

[
v2∇x2 +

F2
m

∇v2

]
f2(x, v, x1, v1, t) (15)

The second part after the ”=” sign is the effect of interactions (collisions) with other

particles. Under certain circumstances (mostly for a dilute gas) the f2 factorize and

we have expressed this as an evolution equation just in terms of the one particle

distribution functions.

It can be shown that this Boltzmann equation will rigorously minimize an H({f}
functional given by

H({f}) =
∫
dxdvf(x, v, t) log(f(x, v, t)) (16)

This in turn allows you to show that this negative entropy is maximized for the

Maxwell Boltzmann distribution

f0(v; ρ, u, θ) =
1

(2πθ)d/2
exp

(
−
(v − u)2

2θ

)
(17)
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BGK approximation of the Boltzmann equation

The collisions will bring the distribution closer to the Maxwell Boltzmann approxi-

mation. This suggests the approximation

∂tf(x, v, t) + v∇f(x, v, t) +
F

m
∇vf(x, v, t) =

1

τ
[f0(v; ρ, u, θ)− f(x, v, t)] (18)

for some density dependent relaxation time τ . The conserved fields are simply

ρ(x, t) =
∫
dvf(x, v, t) (19)

u(x, t) =
1

ρ

∫
dvvf(x, v, t) (20)

θ(x, t) =
1

ρ

∫
dv(v − u)2f(x, v, t) (21)

and those are the same fields that we talked about in the beginning for the hydro-

dynamic equations.

16



Boltzmann to Navier-Stokes

The key idea here is to express the distribution function f in terms of the macroscopic

fields ρ, u and θ. We can do that by using the inverted Boltzmann equation

f(x, v, t) = f0(x, v, t)− τ [∂tf − v∇f −
F

m
∇vf ] (22)

and we obtain an approximation for the Boltzmann evolution equation in terms of

the equilibrium distribution and its derivatives:

(∂t+ v∇+
F

m
∇v)[f

0(ρ, u, θ) + (∂t+ v∇+
F

m
∇v)f

0] =
1

τ
[f0(ρ, u, θ)− f(x, v, t)] (23)

Now f only appears in the collision term, and taking velocity moments corresponding

to mass, momentum and energy conservation mean that these moments of the

collision terms vanish.

The resulting conservation equations are partial differential equations for ρ, u and

θ, exactly the same ones as the hydrodynamic equations we first derived with some

specific transport coefficients that depend on τ .
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Solutions

Now that we have written down the evolution equations we can express how the

system will evolve. But except in some very special situations we can’t find analytical

solutions. (One example of this will be shown by Jordan Larson this afternoon).

This means we need to find computational approaches to solve these equations.

This is where the methods we will talk about today come into play.
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Molecular Dynamics

The key variables are the positions xn(t) and velocities vn(t) of all atoms. Interactions

between atoms is represented through appropriate forces Fn(t). The atoms evolve

according to Newton’s equations that are solved numerically (usually using velcoity

Verlet second order algorithm):

dxn(t)

dt
= vn(t) (24)

dvn(t)

dt
= Fn({xm(t), vm(t)}) (25)

The simulations give the positions and velocities of all particles as a function of time.

This contains all the information needed to investigate most macroscopic systems.

(It misses quantum mechanical effects, interaction with radiation . . . )

Highly accurate, but much too expensive for macroscopic systems!
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Lattice Gas

To model gas and fluid systems much more cheaply, lattice gas methods were de-

veloped. Here particles are restricted to reside on lattice nodes x and move to

neighboring lattice sites x+ ciδt. Occupation numbers of particles that came from

lattice site x − ciδt are denoted by ni(x, t). This allows us to define a local density

and momentum as

ρ(x, t) =
∑
i

ni(x, t); ρ(x, t)u(x, t) =
∑
i

ni(x, t)ci (26)

Original lattice gases had Boolean occupation numbers, but integer occupation num-

bers (more relevant for us) have also been developed∗. These particles then undergo

collisions that lead to a re-distribution of the occupation numbers. The full evolution

can be written as

ni(x+ ciδt, t+ δt) = ni(x, t) + Ξi (27)

where the collision operator Ξi is typically probabilistic and obeys conservation of

mass and momentum ∑
i

Ξi = 0;
∑
i

Ξici = 0 (28)

∗Thomas Blommel and A.J.W., Phys. Rev. E 97, 023310 (2018)
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Lattice Boltzmann

Lattice gases are probabilistic, and (especially for Boolean lattice gases) have large

fluctuations. To analyze the macroscopic behavior of these models a non-equilibrium

Boltzmann average of the lattice gas is taken:

fi(x, t) = ⟨ni(x, t)⟩ (29)

fi(x+ δxi, t+ δt) = fi(x, t) +Ωi (30)

where the fi are real numbers and the collision operator Ωi = ⟨Ξi⟩ is deterministic.

The kinetic theory approach allows to derive the macroscopic equations for mass

and momentum conservation:

∂tρ+∇ρ = 0 Continuity eqn. (31)

∂t(ρu) +∇(ρuu) = −∇P +∇(ρν(∇u+ (∇u)T − 2/3∇.u1)) Navier-Stokes eqn. (32)

This then, is a much cheaper way of simulating a macroscopic system (compared to

MD)
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More about lattice Boltzmann

One can use different collision operators than ⟨Ξi⟩, and such collision operators allow
for simpler collision operators as well as helpful features. The simplest such collision
operator is

Ωi =
1

τ
[f0i (ρ, u)− fi] (33)

and the viscosity is given by

ν =
(
τ −

1

2

)
θ (34)

where for technical reasons θ = 1/3. This is known as the BGK approximation
where the collision operator brings the distribution closer to the local equilibrium
distribution f0i .

A curious result is that over-relaxing (i.e. 1 > τ > 1/2) will lead to a lower viscosity
than could be reached by any physics inspired lattice gas collision operator. All
lattice Boltzmann simulations of high Re flows use this feature, but the lattice
Boltzmann method in this regime seems disconnected from the mesoscopic ideas of
the underlying lattice gas.

There is a small industry to develop “better” lattice Boltzmann collision operators,
known as MRT, entropic, cascaded, cumulant to name but a few. Also extensions
for fluctuating systems and multiphase, multicomponent systems.
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The connecting bridge: MDLG∗

What is new here: we map Molecular Dynamics onto a lattice gas (or Boltzmann),

⇒ fundamental derivation of the “correct” lattice Boltzamann method.

• Impose a lattice with spacing ∆x on the MD

simulation.

• Observe the current lattice position of the par-

ticles.

• Particles moving to a lattice position displaced

by vi after a time-step ∆t are called ni(x, t+

∆t).

• Define a collision term as

Ξi = ni(x+ ci∆t, t+∆t)− ni(x, t)

Then we have a lattice gas evolution equation:

ni(x+ ci∆t, t+∆t) = ni(x, t) + Ξi (35)

This MDLG gives an exact (coarse-grained) representation of the underlying real

fluid system.

∗M. R. Parsa and AJW Phys. Rev. E 96, 013314
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An illustrative example
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As time progresses particles in the central cell migrate to neighboring cells. The

ni(x, t) are then the particles that moved into a new cell displaced by lattice vector

vi after a time-interval ∆t.
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Properties of MDLG

First important property of MDLG: what is the equilibrium?

We look at an equilibrium system and find the probability of a displacement for a

particle is (approximately∗) a Gaussian:

P (1)(δx) = (2π⟨δx2⟩)−d/2 exp
(
(δx)2

2⟨δx2⟩

)
(36)

With this we can calculate

f
eq
i = ⟨ni⟩

=

N∏
m

∫
dxm

∫
dδxm

 P (N)({xm, δxm})
∑
n

∆0(xn)∆vi(xn − δxn)

=
N

V

∫
dx
∫
dδx P (1)(δx)∆0(x)∆vi(x− δx)

This has an analytical solution: (next slide)

∗This is exact in the ballistic and in the diffusive regime, but not inbetween: Aleksandra Pachalieva
and AJW, arXiv:2006.05517
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MDLG equilibrium distribution (u = 0)
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Lattice Boltzmann equilibrium (θ = 1/3):

f
eq
i = ρwi

(
1+

ci.u

θ
+
ci.u

2θ2
−
u2

2θ

)
(37)

Molecular Dynamics lattice gas∗:

f
eq
i = ρ

d∏
α=1

N
e−(ui,α−1)2

2a2 − 2e
−
u2
i,α

2a2 + e
−

(ui,α+1)2

2a2


+
ui,α − 1

2

[
erf(

ui,α − 1
√
2a

)− erf(
ui,α√
2a

)

]

+
ui,α+1

2

[
erf(

ui,α+1
√
2a

)− erf(
ui,α√
2a

)

]}
(38)

where

ui,α = ciα − uα; a2 = ⟨δx2⟩/(∆x)2; N =
a√
2π

;

The graph on the left compares the equilibrium distribution for u = 0 between the

lattice Boltzmann solution and the MDLG solution. There is a special point at

a2 = 1/6 where LB and MDLG equilibrium distributions (almost) agree.
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Equilibrium distributions of the MDLG and LB (dependence on u)
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Lattice Boltzmann equilibrium:

f
eq
i = ρwi

(
1+

vi.u

θ
+
vi.u

2θ2
−
u2

2θ

)
(39)

Molecular Dynamics lattice gas:

f
eq
i = ρ

d∏
α=1

N
e−(ui,α−1)2

2a2 − 2e
−
u2
i,α

2a2 + e
−

(ui,α+1)2

2a2


+
ui,α − 1

2

[
erf(

ui,α − 1
√
2a

)− erf(
ui,α√
2a

)

]

+
ui,α+1

2

[
erf(

ui,α+1
√
2a

)− erf(
ui,α√
2a

)

]}
(40)

While the two expressions are obviously different, they agree for u < 0.1 to good

accuracy. Since LB is known to work, this is encouraging. Note that MDLG values

overlap at u = 0.5, which is necessary for Galilean invariance symmetry (and unlike

LB, the velocity set is not restricted).
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Original motivation: fluctuations

We originally started this investigation because we wanted to understand what fluc-

tuations in LB should look like, particularly for non-ideal gases.

For ideal gases we know from Pitaevskii & Lifshitz that the probability of finding n

particles in a cell with average density of ρeq is given by a Poisson distribution:

P (ρ) = exp (−ρeq)
(ρeq)ρ

ρ!
(41)

This implies ⟨(ρ − ρeq)2⟩ = 1/ρeq. This argument can be extended for occupation

numbers:

P (ni) = exp(−feqi )
(feqi )n

n!
(42)

You get this rigorously for ideal integer lattice gases∗, and approximately for ideal

fluctuating lattice Boltzmann†.

∗T. Blommel and AJW Phys. Rev. E 97, 023310
†AJW and K. Strand Phys. Rev. E 94, 033302
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Scaling of fluctuations

For the Poisson distribution we have

⟨ni⟩ = f
eq
i (43)

⟨ninj⟩ = f
eq
i f

eq
j + f

eq
i δij (44)

This means that the width of the distribution, compared to its mean, decreases as

the mean increases:

Wii =

√
⟨(ni − f

eq
i )2⟩

⟨ni⟩
=

1√
f
eq
i

(45)

This also predicts how the importance of fluctuations declines as we increase the

lattice size, thereby increasing the average number of particles per lattice site.
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Test of fluctuations for a dilute gas
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A dilute gas with an average of 160

particles per lattice site. We observe

excellent agreement between the the-

oretical Poisson distribution (green

line) and the measured histograms.
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0
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0.03
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The same system, but with a larger

lattice size ∆x, and an average num-

ber of particles per lattice side of

2700. Some minor deviations between

Poisson and measurements are visible.
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What to expect for fluctuations for particles at moderate densities?

If one includes a repulsive part to the particle potential, there is effective excluded

volume. This reduces the available space for other particles, and this reduces the

density fluctuations.

Under coarsegraining, the scaling is still

⟨
√
(ρ− ρeq)2⟩
ρeq

∝ 1/
√
ρeq (46)

but with a smaller pre-factor. (This it true for any equal time quantity).

So what should we expect for the scaling of the ni for larger lattice sizes?
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The distributions for a dense system
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For a dense system distribution is not

Poisson. More strikingly: while the

density distribution is more narrow,

the distribution for the ni is wider!

For wider distributions to combine to

a narrow distribution, there must be

significant negative correlations!

0 500 1000 1500 2000 2500 3000
0

0.01

0.02

0.03

Upon coarse-graining the ρ-

distribution narrows as expected.

But the fluctuations of the ni do

not significantly more narrow, as we

would expect!

If it did not narrow at all, the thermo-

dynamic limit would no longer work.
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Wij =
⟨(ni − f

eq
i )(nj − f

eq
j )⟩

ρeq
√
f
eq
i f

eq
j

(47)
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The cross correlators grow indeed big for

large densities.
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Theoretical model

Let us consider what we can predict analytically

⟨ni(x)nj(y)⟩

=

〈
M∑
k=1

∆x(xk)∆x−vi(xk − δk)
M∑
l=1

∆y(xl)∆y−vj(xl − δl)

〉
=
∑
k,l

∫
dx1

∫
dδ1 · · ·

∫
dδMP

M(x1, δ1, · · · , xM , δM)∆x(xk)∆x−vi(xk − δk)∆y(xl)∆y−vj(xl − δl)

=(M2 −M)

∫
dx1

∫
dδ1

∫
dx2

∫
dδ2P

2(x1, δ1, x2, δ2)∆x(x1)∆x−vi(x1 − δ1)∆y(x2)∆y−vj(x2 − δ2)

+M

∫
dx1

∫
dδ1P

1(x1, δ1)∆x(x1)∆x−vi(x1 − δ1)∆y(x1)∆y−vi(x1 − δ1)

=(M2 −M)

∫
dx1

∫
dδ1

∫
dx2

∫
dδ2P

2(x1, δ1, x2, δ2)∆x(x1)∆x−vi(x1 − δ1)∆y(x2)∆y−vj(x2 − δ2) + f eqi δijδxy,

(48)

In principle, to predict any properties of the MDLG, all we need is contained in the

(little studied) N-particle displacement probability:

PN(δx1, δx2, · · · , δxN , t) (49)

For a system in equilibrium there is no time-dependence. And here we only need P2.
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Two particle displacement probability distribution

While velocities are uncorreleated in equilibrium

⟨v1(t)v2(t)⟩(x1(t)− x2(t)) = 0 (50)

the same is not true for displacements:

⟨[x1(t+ δt)− x1(t)][x2(t+ δt)− x2(t)]⟩(x1(t)− x2(t)) ̸= 0 (51)

due to a build-up of correlations due to the interactions of particles. These correla-

tions are responsible for the unexpectedly large fluctuations of the ni.

When one wants to build a realistic fluctuating lattice Boltzmann method for non-

ideal systems, these correlations are likely important.
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The correlations

What we find is

⟨[x1(t+δt)−x1(t)][x2(t+δt)−x2(t)]⟩(x1(t)−x2(t)) ≈ 2 (ρ∆x)
1
2 exp

(
−
|x1 − x2|
ξ∆x

)
(52)
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Model for correlations

The simplest model that recovers the distance dependence of the correlations is

P (x1, δ1, x2, δ2) ∝ g(r) exp

−(δ1 + δ2)
2

4σ2+(r)

 exp

(
−
(δ1 − δ2)

2

4σ2−(r)

)
(53)

where r = |x1 − x2| and

σ±(r) = a∆x

√√√√1±
⟨δ1δ2⟩(r)
⟨δ1δ1⟩

. (54)

This is only expected to be a zeroth order approximation to the real two particle

displacement distribution, but we can use this as a theoretical starting point to

numerically evaluate ⟨ninj⟩ and compare it to the MDLG results.
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Comparison of theory and MDLG

Here we compare the width of the distribution

Wii = ⟨(ni(x)− f
eq
i )2⟩/(Neqf

eq
i ). (55)
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Despite smaller differences in the details the overall scaling are recovered quite well,

indicating that our displacement probability distribution captures the key effects here.
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We have focused on the density ρ, but what about momentum?

The lattice gas/lattice Boltzmann definition of momentum

ρuLG =
∑
i

nivi (56)

ρuLB =
∑
i

fivi = ⟨ρuLG (57)

The MD definition of momentum in a lattice site ξ

ρuMD =
∑
n
vn∆ξ(xn) (58)

We had previously shown that

ρuLB = ⟨ρuMD⟩ (59)

as should be expected for any scheme that recovers correct hydrodynamics, but what

about the fluctuating contributions?

41



42



Scatter plot of momenta

jLG =
∑
i

nivi (60)

j =
∑
n
vn∆ξ(xn) (61)

j∆t =
1

∆t

∫ t+∆t

t
dtj(t) (62)

jLG is discrete lattice gas mo-

mentum.

j is standard MD momentum

j∆t is j averaged over one

timestep.
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Correlations between momenta

Cja,jb =
1

2XT

∑
ξ

∑
t

ja(ξ, t)
σja

−
jb(ξ, t)

σjb

2
(63)

For small ∆t j and j∆t are

highly correlated (as would be ex-

pected)

But jLG and j∆t are getting more

correlated as ∆t increases.
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What about the magnitude of the current fluctuations σj?

We all know

σj = ρkBT (64)

and we do get a straight line as

expected.

σjLG follows the ideal gas the-

ory (i.e. Poisson distributed in-

dependent ni) reasonably well.

σj∆t does not agree well with a

theory that assumes independent

displacements of particles (dash-

dot line). But a theory that

includes correlations of particles

give good predictions (dashed

line).
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What about the small ∆t limit?

Either lattice gas momentum does not agree with MD momentum in the small scale

limit, or the ideal gas prediction of a flat momentum fluctuation spectrum fails.
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Fourier transforms of the current fluctuations

For small ∆t jLG has a flat

spectrum, which means the

lattice gas current fluctuations

are larger than the MD current

fluctuations for all k.

The jMD are initially flat, but

then converge to something very

similar to the jLG fluctuations.

The j fluctuations remain flat for

a all ∆t, as expected from basic

theory.
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Non-equilibrium behavior

So far we have focused on equilibrium behavior:

• Local equilibrium distribution

• Equilibrium fluctuations in density

• Equilibrium fluctuations in momentum, and different definitions of momentum.

Now it is time to look at some non-equilibrium behavior, which after all is where

lattice gas and lattice Boltzmann should be applied.
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The collision operator

We defined the Boltzmann collision operator as a non-equilibrium ensemble average

Ωi = ⟨Ξi⟩ = ⟨ni(x+ δxi, t+ δt)− ni(x, t)⟩ (65)

To measure this collision operator we should average over all (or at least a sufficiently

large representative sample of) possible microscopic configurations. To do this we

set up a MD simulation with Lees-Edwards boundaries to simulate simple shear flow.

The average of the flow will be stationary, and we can then sample over the whole

system (using Galilean transformations to have the center of each cell at 0 velocity).
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Rest of the workshop

Monday 1:30 Jordan Larson, Analytical solution to LBM

Tuesday 10am Hamed Vaseghnia, Deriving the LBM forcing term through MDLG

Tuesday 11am Adam Quintana, A new form of double phase separation in the

Cahn Hiliard equation

Wednesday 10am Kyle Strand, Overrelaxation in Integer lattice gases

Wednesday 11am Aleksandra Pachalieva, Applications of the Molecular Dynamics

lattice gas analysis tool
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Rest of the workshop

Tuesday 10am Matteo Lulli, MDLG like analysis of an Ising model.

Tuesday 11am Adam Quintana, The He-Chen-Zhong method for multiphase sys-

tems

Friday 10am Noah Seekins, Monte Carlo integer lattice gas

Friday 11am Luiz Czelusniak, Phase change considerations.

In the afternoon we will have research meetings with me and with each other too

facilitate research interactions. Lunch will be at noon in the MU and we will have

coffee at 3pm at the same place (unless I get our kitchen to work).
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Conclusions

• We have examined (very) different models for a real fluid and explained what
goes into showing their equivalence.

• Molecular dynamics simulations can be used to define an exact version of lattice
Boltzmann (MDLB). Really what is needed is just P (x, δx, t) for the particular
situation.

• The equilibrium distribution agrees with standard LBM for small mean velocities

• This allows us to predict fluctuating properties lattice gases for non-ideal systems,
which are quite different than what has been previously expected. As usual,
fluctuating methods require more information, in this case P (x1, δx1, x2, δx2, t).

• It also provides a first-principles derivation of the lattice Boltzmann collision
operator. All the properties of lattice Boltzmann have been reduced to finding
the 1-particle displacement distribution function.
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