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Motivation

There are few analytical solutions to the Lattice Boltzmann Equation
(LBE). Those that do exist are very powerful since they allow close
analysis of the method itself.

Zou et al.1 calculated analytical solutions for the Poiseuille and the
Couette flow. However, as will be shown, discrepancies were found for the
validity of their solution for the Couette flow.

1J. Stat. Phys., Vol. 81, (1995), pp. 3
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Motivation

For a simple shear flow (couette), the macroscopic velocities at different
positions only differ by constant amounts. Perhaps the {fi}8i=0 are related
to each other similarly, so a Galilean transformation assumption is
proposed as the major assumption. The LBE is just a huge system of
equations, so the system decouples, and now focus is required only on the
{fi} at one point.

This assumption may not necessarily produce an analytical solution, but it
is shown that the (unique) derived solution fulfills the LBE. The solution
derived agrees with experiment to machine accuracy. It’s also interesting
to pursue a solution solely in terms of the equilibrium distribution. Finally,
looking at this simpler case may provide insights to more complicated
flows.
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The Lattice Boltzmann Method
Define {fi (x , t)} as local probability densities associated with a lattice
velocity v⃗i . Macroscopic quantities can be calculated via moments of these
functions. Density is ∑

fi (x , t) = ρ(x , t) (1)

and the local momentum is∑
fi (x , t)viα = ρ(x , t)uα(x , y) (2)

The {fi} evolve due to the Lattice Boltzmann Equation

fi (x⃗ + v⃗i , t +∆t) = fi (x⃗ , t) + Ωi

(3)

We shall use the BGK approximation for the collision operator Ωi :

Ωi = ∆tω(f 0i (ρ, u⃗)− fi (x , t)) (4)

where ω is a relaxation time parameter.
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The Lattice Boltzmann Method

The local density equilibrium f 0i is given by the Maxwell-Boltzmann
distribution:

f 0i (ρ, u⃗) = wi

(
1 + 3viαuα +

9

2
viαuαviβuβ − 3

2
u2α

)
(5)

where wi are the lattice weights (w0 =
4
9 , wi =

1
9 for i ∈ {1, 2, 3, 4},

wi =
1
36 for i ∈ {5, 6, 7, 8}). Einstein summation convention is used.

∆t = 1 and lattice spacing ∆x = 1 is henceforth assumed. Assuming that
the fi are stationary (time-independent), (3) now becomes

fi (x⃗ + v⃗i ) = fi (x⃗)(1− ω) + ωf 0i (ρ, u⃗) (6)

A computer program can recursively implement (6), (1), and (2) to
simulate fluid flow.
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Problem Characteristics

For the simple steady-state shear flow that we are interested in, the
velocity has the following form in Cartesian coordinates (x-direction is
parallel with movement)

ux(y) = γ̇y (7)

uy = 0 (8)

Thus (6) becomes (assume ρ = 1 uniformly)

fi (y + viy ) = fi (y)(1− ω) + ωf 0i (γ̇y) (9)

J. Larson, A. J. Wagner (NCHS, NDSU) Analytical Solution for a Simple Shear Flow July 1, 2022 7 / 19



Boundary Conditions for Actual Simulation

How to put experiment and theory on common ground to compare?

Boundary conditions are quite important, for discrepancies easily
transmit into the bulk.

▶ First: boundary = local equilibrium distribution, failed

Second: boundary = analytical sol.
▶ first guess
▶ Zou
▶ final solution
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Major Assumption
As an ansatz, it is assumed that the fi at different positions can be related
to each other through a Galilean transformation. Wagner and
Paganobarraga2 provide the following form from a Taylor Series expansion
(taylor expand the LBE to first order, reinsert into itself, 2nd order terms
are 0):

∆fi = fi (y + viy )− fi (y)

= f 0i (γ̇(y + viy ))− f 0i (γ̇y)

− τ

(
viα∂α[f

0
i (γ̇(y + viy ))− f 0i (γ̇y)] + ∂t [f

0
i (γ̇(y + viy ))− f 0i (γ̇y)]

)
+ O(∂2)

= f 0i (γ̇(y + viy ))− f 0i (γ̇y)− τ

(
viα∂α(f

0
i (γ̇(y + viy ))− f 0i (γ̇y))

)
(10)

where τ = 1
ω . The higher order O(∂2) terms are 0 by the nature of the

simple shear flow, and the time derivative is 0 since the flow is
steady-state.

2Journal of Statistical Physics 107, 521–537 (2002)
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First Guess

The first iteration of the Galilean Invariance Assumption was

∆fi = f 0i (γ̇(y + viy ))− f 0i (γ̇y)

Plugging this into (9), there results (using a change of variables)

fi (y) = fi (γ̇(y − viy )(1− ω) + ωf 0i (γ̇(y − viy ))

=
(
fi (y) + f 0i (γ̇(y − viy ))− f 0i (γ̇y)

)
(1− ω) + ωf 0i (γ̇(y − viy ))

⇐⇒ fi (y) =
f 0i (γ̇(y − viy ))− f 0i (γ̇y) + ωf 0i (γ̇y)

ω
(11)

of course if ω ̸= 0
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Problems
(11) doesn’t even solve the LBE, though!

f 0i (γ̇y)− f 0i (γ̇(y + viy )) + ωf 0i (γ̇(y + viy ))

ω

=
f 0i (γ̇(y − viy ))− f 0i (γ̇y) + ωf 0i (γ̇y)

ω
(1− ω) + ωf 0i (γ̇y)

⇐⇒
(
−2f 0i (γ̇y) + f 0i (γ̇(y + viy )) + f 0i (γ̇(y − viy ))

)
(ω − 1) = 0

Using (5) and that u(y + viy ) = ux(y) + γ̇viy , it is clear that

f 0i (γ̇(y ± viy )) = wi

(
1 + 3vix(ux ± γ̇viy ) + (

9

2
v2ix −

3

2
)(ux ± γ̇viy )

2

)
(12)

Plugging in and canceling and grouping, the result is(
−2f 0i (γ̇y) + f 0i (γ̇(y + viy )) + f 0i (γ̇(y − viy ))

)
(ω − 1) = 0

⇐⇒
(
3wi (3v

2
ix − 1)v2iy γ̇

2
)
(ω − 1) = Ci (ω − 1) = 0 (13)

But the quantity Ci is in general not equal to 0. Hence, (11) is a solution
only when ω = 1 (since i spans the set {0, 1, 2, ..., 8}). This is peculiar.
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Problems

Moreover, the ”solution” doesn’t even solve the first iteration of the
Galilean Invariance Assumption:

f 0i (γ̇y)− f 0i (γ̇(y + viy )) + ωf 0i (γ̇(y + viy ))− f 0i (γ̇(y − viy )) + f 0i (γ̇y)− ωf 0i (γ̇y)

ω

= f 0i (γ̇(y + viy ))− f 0i (γ̇y)

⇐⇒ −2f 0i (γ̇y) + f 0i (γ̇(y + viy )) + f 0i (γ̇(y − viy )) = 0

⇐⇒ Ci = 0 ⇐⇒ F

The solution was obtained by assuming these two equations, so how
doesn’t it satisfy them anymore?
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Solution

The derived analytical solution is

fi (y) =
f 0i (γ̇(y − viy ))− f 0i (γ̇y) + ωf 0i (γ̇y)

ω
+

(1− ω)Ci

ω2
(14)

where Ci =
1
2v

2
iy (v

2
ix −

2
3)γ̇

2. Algebra shows that

Ci =
1
2v

2
iy (v

2
ix −

2
3)γ̇

2 = 3wi (3v
2
ix − 1)v2iy γ̇

2.

J. Larson, A. J. Wagner (NCHS, NDSU) Analytical Solution for a Simple Shear Flow July 1, 2022 13 / 19



Sufficiency

Equation (14) solves (6) and (10).

f 0i (y)− f 0i (y + viy ) + ωf 0i (y + viy )

ω
+

(1− ω)Ci

ω2

= ωf 0i (y) + (1− ω)

(
f 0i (y − viy )− f 0i (y) + ωf 0i (y)

ω
+

Ci (1− ω)

ω2

)
⇐⇒ (−2f 0i (y) + f 0i (y + viy ) + f 0i (y − viy ))(ω − 1) = Ci (ω − 1)

⇐⇒ Ci = Ci

(ω = 1 works). Moreover, looking at equation (10),

vix∂x [f
0
i (γ̇(y + viy ))− f 0i (γ̇y)] + viy∂y [f

0
i (γ̇(y + viy ))− f 0i (γ̇y)]

= 3wi (3v
2
ix − 1)v2iy γ̇

2 = Ci

after using (12) and since ∂xu = 0 and ∂yu = γ̇. Hence, the needed
corrective factor is present, so it solves it.
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Necessity

Combing equations (10) and (9), equation (14) is obtained. This makes
sense because the extra factor of Ci

ω is present.
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Comparison to Zou et al.
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Figure: ω = 1.5 Zou diff
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Figure: ω = 0.2

The Zou solution is
basically eq. 11 (first
guess) plus Ci

ω2
a. While

analyzing these to the
left differences, Prof.
Wagner brilliantly
suggested to multiply a
factor of (1− ω) to Ci

ω2 ,
hence the proposed
analytical solution (14).

aJ Stat Phys 81, 319–334 (1995).
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Numerical Verifications
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Figure:
ω =
1.9 error between analytical solution and implementation
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Figure: ω = 1.5
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Figure: ω = 0.2
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Importance of Second Order Correction

The second iteration of the Galilean transformation adds a non-zero
constant to

∆f 0i

meaning that ∆fi ̸= ∆f 0i for this flow. The correction term increases as
ω → 0 (which is where we were seeing larger deviations).

The quantity −2f 0i (γ̇y) + f 0i (γ̇(y + viy )) + f 0i (γ̇(y − viy ) shows up a lot
(averaging, Laplace’s eq.). For simple shear flow, it is simply Ci . In fact,
you can work backwards from this to also get the analytical solution,
which is what we saw at first, but we thought it wouldn’t make sense to
just add a constant to the Gal. transformation.

For other flows, the correction term is not constant.
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Outlook

Galilean transformation assumption turns out to be a valid way to get
a solution.

Flows for which ∆fi = ∆f 0i ?

(stationary) simple shear flow, 2nd order terms are 0

Apply Galilean Transformation with correction to other flows

Need to keep higher orders

Lees-Edwards Boundary Conditions

Different equilibrium distributions, collision operators
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