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Boolean Lattice Gases1

ni (x + vi , t + 1) = ni (x , t) + Ξi

ni boolean occupation number;
vi lattice velocity;
Ξi collision operator.

• Popular in the 1980s and 1990s - Allowed for the simulation of the Navier-Stokes
equations, something revolurionary for their time.

• Equilibrium is Fermi-Dirac: leads to velocity dependence of viscosity and other artifacts.

• Lookup methods had difficulty scaling to three dimensions.

• EXA company developed the Digital Physics approach which solved some issues, but
results are proprietary.

• Eventually replaced by lattice Boltzmann due to these issues
1Uriel Frisch, Brosl Hasslacher, and Yves Pomeau, “Lattice-gas automata for the navier-stokes equation,”

Physical Review Letters 56, 1505 (1986)
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Lattice Boltzmann2

fi (x + vi , t + 1) = fi (x , t) + Ωi

fi non-equilibrium ensemble average of ni ;
vi lattice velocity;
Ωi collision operator.

• Originally created by taking the Boltzmann average of the lattice gas equation.

• Used as a tool for testing lattice gas simulations before being introduced in its own right.

• Equilibrium is Maxwell-Boltzmann by default, however for entropic lattice Boltzmann
equilibrium is Poisson distributed.

• Does not include fluctuations by default.

2G. McNamara and G. Zanetti, Phys. Rev. Lett. 61, 2332 1988!.
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Integer Lattice Gases3456

• ni become integers

• Equilibrium distribution becomes Poisson Distributed

• Fixes nearly all of the issues with the Boolean lattice gases except for efficiency and
over-relaxation.

• Goal: find an efficient form of Ξi (Previous approach based on binary particle collisions)

3B. Chopard, A. Masselor and M. Droz. Phys. Rev.Lett. 81:9, 1998.
4Thomas Blommel and Alexander J Wagner, Physical Review E 97, 023310 (2018).
5H. Chen, C. Teixeira, and K. Molvig, Digital physics approach to computational fluid dynamics: Some basic

theoretical features, Int. J. Mod. Phys. C 8, 675 (1997).
6B. M. Boghosian, J. Yepez, F. J. Alexander, and N. H. Margolus,Integer lattice gases, Phys. Rev. E 55,

4137 (1997).
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Why Integer Lattice Gases?

• The discrete nature of the integer lattice gas allows for several types of previously difficult
simulations to become simple.

• Chemical reactions within fluids and extremely low-density systems are just a few
examples of what these discrete methods can do better than the LBM, which struggles
with them due to its nondiscrete and deterministic nature.
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Developing a Monte Carlo collision operator7

• Idea: the effect of the collision operator is to bring
the ni closer to equilibrium.

• Define the new ni by sampling from equilibrium
distribution with probability P(n1, · · · , nV )

• Ordinarily sampling requires picking points off of a
V − C dimensional hypersurface where C are the
number of conserved quantities.

• In practice, we’ve found that this can be simplified
due to decoupled axes.

7B. M. Boghosian, J. Yepez, F. J. Alexander, and N. H. Margolus, Integer lattice gases, Phys. Rev. E 55,
4137 (1997).
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Simplest case: diffusive lattice gas10

Only mass is conserved. We want to impose a local equilibrium distribution

f eqi = ⟨ni ⟩eqN = Nwi (1)

with
∑

i wi = 1. We do this by demanding detailed balance

f eqi Pi→j = f eqj Pj→i

Where Pi→j is the probability of a particle with velocity i , if selected, becoming a particle with
velocity j . This can be achieved in a very simple manner:

Pi→j = wj

(We demand detailed balance first instead of imposing a local equilibrium distribution. This
leads to different results in the hydrodynamic case where only f eqi (ρ, u ≡ 0) can be imposed8,9)

8B. Chopard, A. Masselor and M. Droz. Phys. Rev.Lett. 81:9, 1998.
9Thomas Blommel and Alexander J Wagner, Physical Review E 97, 023310 (2018).

10B. Chopard and M. Droz, Cambridge University Press, 1998, section 5.7 and 7.3
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Determining the Local Equilibrium Distribution

As the diffusive system does not conserve momentum, we represent all collisions as being with
a probability matrix.
Thus, the probability of finding n particles in a specific velocity i after a collision, when the
lattice site has N total particles, is:

Pi (n) =
N!

n!(N − n)!
wn
i (1− wi )

N−n.

Due to there being more than one velocity, and each having its own wi , we must sample this
distribution successively, so that for a second velocity j sampled after velocity i is found to
have ni particles:

Pj(n) =
(N − ni )!

n!(N − ni − n)!
wn
j (1− wj)

N−ni−n.
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Local equilibrium distribution: The Multinomial Distribution

P(n1, · · · , nV ) =
{ N!

n1!···nV !w
n1
1 · · ·wnV

V for n1 + · · ·+ nV = N

0 otherwise

• For our diffusive lattice gas with weights wi , we find that the equilibrium distribution of
occupation numbers ni is given by a multinomial distribution.

• In practice we sample from the multinomial distribution by sampling from successive
binomial distributions.

• We use the GNU Scientific Library11 for higher densities, and we created our own
algorithm, which is actually more efficient for lower densities

11Galassi et al, GNU Scientific Library Reference Manual (2nd Ed.), ISBN 0954161734
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Sampling

• As it is the core of our method, it is important to discuss sampling as a concept.

• In general, sampling functions by comparing a uniformly distributed random number r to
the cumulative probability distribution:

C (n) =
n∑

m=0

P(m)

• Since we are dealing with discrete values of n, each n will have a range of values of r that
correspond to it.

• Thus, if C (n) = 0.6 and C (n + 1) = 0.7, any value of r from 0.6 to 0.7 would correspond
to n.

11 / 36



Sampling Visualized
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Our Sampling Method

• Sampling for a distribution with an unknown cumulative distribution function (as is the
case for the binomial distribution) requires the cumulative distribution function to be
calculated on each call.

• We save time by precalculating and saving key points (in the case of the visualized
example, C (n) 0.5) in order to make the process easier.

• This works for any distribution with a known recursive relation, whereas many libraries
may not have a sampling method for uncommon or unique distributions (such as the one
we will be discussing with regards to hydrodynamic systems).
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Partial Collisions

• Partial collisions are useful to alter the viscosity of a simulated fluid.

• Due to the integer nature of lattice gases, partial collisions must be sampled for in
addition to the velocity set sampling.

• In order to undertake partial collisions, we define the fraction of collided particles in a
given timestep as ω.

• Utilizing ω as a probability for collision, we are able to sample the particles to be collided
in each velocity utilizing a binomial distribution, thus the probability of n particles being
collided in a velocity with N particles becomes:

P(n) =

(
N

n

)
ωn (1− ω)(N−n)
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Hydrodynamic limit

In order to prove that this method is viable, one of the important steps is ensuring that the
hydrodynamic limit returns the proper form, in this case, the diffusion equation.
We first take an ensemble average to obtain a lattice Boltzmann equation

fi (x + vi , t + 1) = fi (x , t) + ω[ρ(x , t)wi − fi (x , t)]

where ρ =
∑

i fi . We also demand∑
i

viwi = 0
∑
i

v2i wi = dθ

Where d is the number of spatial dimensions, and θ is a constant.
We are able to Taylor expand the averaged equation to find:

fi (x , t) = ρ(x , t)wi −
1

ω
(∂t + vi∇) + O(∂2)
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Hydrodynamic Limit

Reinserting our Taylor expansion into the averaged equation, we get:

∂tρ(x , t)wi + vi∇f eqi − (
1

ω
− 1

2
)(∂t + vi∇)2ρ(x , t)wi = ω(ρ(x , t)wi − fi ) + O(∂2)

which, if we then sum over i , allows us to utilize the restrictions we posed earlier.

∂tρ+ (
1

ω
− 1

2
)(∂2

t ρ+∇2(ρθ)) = 0 + O(∂3)

and finally, simplifying this gives us

∂tρ(x , t) =

(
1

ω
− 1

2

)
θ∇2ρ

which is the diffusion equation with D = ( 1ω − 1
2)θ and θ = 1

3 by convention.
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Testing: obtaining Poisson distributed ni in equilibrium
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• We recover the Poisson distribution in equilibrium

• Fluctuating lattice Boltzmann methods fail to do this for low densities.
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Solution to the Diffusion Equation

In order to look at the evolution of the system in a controlled manner, we set up a sinusoidal
profile utilizing a Poisson distribution. This allows us to utilize the following solution to the
diffusion equation to compare to our results:

ρ(x , t) = Nav

[
1 + sin

(
2πx

Lx

)]
exp

(
−4π2Dt

L2x

)
Where

D =

(
1

ω
− 1

2

)
θ.
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Dynamics: Decay of sin wave for different diffusivities

0 2000 4000 6000 8000 10000 12000 14000

Iterations

0.1

1

10

100

1000

A
m

p
li

tu
d

e

1/ω = 1.0

1/ω = 1.1

1/ω = 1.3

1/ω = 1.5

1/ω = 1.7

1/ω = 2.0

1/ω = 2.5

• Decay of sine wave is well recovered for different relaxation times (i.e. diffusivities)
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Timing Results12
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Figure: 1/ω = 1
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Figure: 1/ω = 2

12Alexander J Wagner and Kyle Strand, “Fluctuating lattice Boltzmann method for the diffusion equation,”
Physical Review E 94, 033302 (2016).
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Hydrodynamic Systems

• Momentum is conserved.

• Returns the Navier-Stokes Equations in the Hydrodynamic limit

• This allows for most standard forms of flow to be observed, where the diffusion equation
is more limiting.

• The simulations of wind tunnels, airfoils, engine exhaust pipes, and... cows... used in
manufacturing and research all utilize a hydrodynamic flow in their calculations.
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Challenges for Hydrodynamic Systems

• Due to the requirement of Momentum conservation the basic algorithm requires (at least)
binary collisions.

• We still require detailed balance which applies to binary collisions thusly:

wiwjPij→kl = wkwlPkl→ij

• The resulting equilibrium distribution is not as common as the Multinomial Distribution,
meaning that there are no pre-analyzed packages to increase the efficiency.
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Sampling from the Moments: D1Q3 example

Instead of sampling from the equilibrium distribution of the particles, we instead move to
moment space to sample. The moments are defined as follows (or, the first three that we use
for sampling):

N =
∑
i

ni = n−1 + n0 + n1

J =
∑
i

nivi = n1 − n−1

π =
∑
i

niv
2
i = n1 + n−1.

n−1 =
π − J

2
n0 =N − π

n1 =
π + J

2
.

We can utilize these moments, and their relations with each other, to find an equilibrium
distribution over π to sample by defining the ni values in terms of the local moments.
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Which moment to sample?

• The velocities v + i are sampled in the diffusive case directly via the weights for individual
velocities, however this leads to improper momentum handling for two particle collisions.

• J is a representation of momentum in the system, thus is conserved over the collision step.

• This just leaves π as the only moment that is able to be sampled.

π is non-trivial to sample, as its local equilibrium distribution is nonstandard. Thus, we must
derive the local equilibrium distribution for π in order to sample it.
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Proper π distribution

• In order to find the local equilibrium distribution, the detailed balance

P(π + 2) =
w1w−1

w2
0

∗ 2(N − π)2 − (N − π)

π2 − J2
∗ P(π).

relation:
P(π)tπ→π+2 = P(π + 2)tπ+2→π

must be satisfied.

• In this relation, P(π) is the probability of the π moment taking a specific value, and
tπ→π+2 and tπ+2→π are the transition probabilities.

• The transition moves from π to π + 2 and not to π + 1 since J must be conserved, and
thus the velocities of particles can only be changed in positive and negative pairs.
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Transition Probabilities

• To find the transition probabilities, we look at the probability of having a pair of moving
particles go to rest particles (tπ+2→π) and vice versa (tπ→π+2).

• The probability of picking a rest particle is given by n0/N, and the probability of picking a
second rest particle is (n0 − 1)/(N − 1).

• Thus, the transition probability tπ→π+2 is given by:

tπ→π+2 = pπ→π+2 ∗
n20 − n0
N2 − N

where n0 is the number of rest particles, N is the total number of particles, and
pπ → π + 2 is a normalization factor which by convention we pick as 1/16.
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Transition Probabilities

• There are two ways to pick a pair of moving particles: either pick one moving in the
positive direction and then one in the negative direction, or vice versa.

• The probability of the first option is given by n1/N for the positive particle, and
n−1/(N − 1) for the negative.

• The probability of the second option is given by n−1/N for the negative particle, and
n1/(N − 1) for the positive.

• Thus, the transition probability tπ→π+2 is given by:

tπ+2→π = pπ+2→π ∗ 2n1n−1

N2 − N

where n1 is the number of particles moving in the positive direction, n−1 is the number of
particles moving in the negative direction, and pπ→π+2 is a normalization factor which by
convention we pick as 1.
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Proper π distribution

These transition probabilities can then be rewritten in terms of the known moments: N, J, and
π, giving us:

tπ→π+2 = pπ→π+2 ∗
(N − π)2 − (N − π)

N2 − N

tπ+2→π = pπ+2→π ∗ π2 − J2

2(N2 − N)

Which leads the recursive probability distribution to be:

P(π + 2) =
pπ→π+2

pπ+2→π
∗ 2(N − π)2 − (N − π)

π2 − J2
∗ P(π)
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Weighted Probabilities

• The values of pπ→π+2 and pπ+2→π are the probabilities of having two rest particles
become moving particles and vice versa.

• This means that although two rest particles are selected, they will not always become
moving particles.

• The chance of this happening is given by the weights of the system:

pπ→π+2 = w1w−1

pπ+2→π = w2
0

• Thus, the π distribution becomes

P(π + 2) =
w1w−1

w2
0

∗ 2(N − π)2 − (N − π)

π2 − J2
∗ P(π).
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Matching the π distribution with theory
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• We have, by utilizing a similar algorithm
to that used by Blommel et al., been able
to show that our equilibrium distribution
is accurate.

• As is shown on the left, given no
streaming, a system will fall into
equilibrium in this way for both the x and
y axis in terms of π.

• As this distribution is not simple, utilizing
a library like the GSL may not be an
option.
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N , J , and π global equilibrium distributions
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Theoretical π • Globally, the N, J, and π values have
different equilibrium distributions than
they do locally.

• N and π are Poisson distributed.

• J is Skellam distributed.
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Testing the method in full

• In order to ensure the proper functioning of the method, it is necessary to utilize several
test cases. The 1D test cases we have decided to utilize are the SOD shock tube and
potentially a decaying sound wave.

• Neither of these examples is fully implemented, as we are working on finding applicable
analytical solutions for how these develop to influence the setup and testing of the
systems.

32 / 36



More dimensions

• Increasing from 1D to more dimensions is
a nontrivial process for the
Hydrodynamic system (as opposed to the
diffusive system where it is as simple as
increasing the dimension of the particle
array and the number of velocities).

• This complexity results from the fact that
J must be conserved locally, and thus,
the total J value across several axes must
be conserved in order for the
axis-decoupling strategy to remain valid.
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More dimensions cont.

• The process of increasing the number of
dimensions is slightly easier due to the
fact that the x and y dimension π
distributions for a 2D system are identical
to the 1D π distribution found earlier.

• This leaves the most difficult part as
figuring out how to properly split the
momentum among the axes.
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Outlook

• Our paper on the diffusive Monte Carlo lattice gas has been officially published13.

• We have a functioning prototype for a 1D Hydrodynamic Monte Carlo lattice gas, and
intend to write a paper on that as well, including additional proof for the functionality of
the method and 1D Hydrodynamic MCLG Overrelaxation, in part thanks to the work of
Kyle Strand et. al.14.

• We have some ideas on how to move the system to 2D (and 3D), however they remain
untested thusfar, and this is intended to be included in a follow-up paper to the 1D
version.

13Noah Seekins and Alexander J. Wagner, Integer lattice gas with a sampling collision operator for the
fluctuating diffusion equation, Phys. Rev. E 105 (2022), 035303.

14Kyle Strand and Alexander J. Wagner, Overrelaxation in a diffusive integer lattice gas, Phys. Rev. E 105
(2022), L063301
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Questions
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